
ANDY: A general, fault-tolerant tool for database searching on computer clusters

Running head: ANDY: database searching on computer clusters

Andrew Smith1,2,3,4, John-Marc Chandonia2, and Steven E. Brenner1,2

Address for correspondence:

Steven E. Brenner

Department of Plant and Microbial Biology

461A Koshland Hall

University of California

Berkeley, CA 94720-3102

email: brenner@compbio.berkeley.edu

Affiliations:

1 - Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA

2 - Berkeley Structural Genomics Center, Physical Biosciences Division, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA

3 - Department of Molecular Biophysics and Biochemistry and Department of Computer Science, Yale

University, New Haven, CT 06520, USA

4 - Current Address: Department of Computer Science, Yale University, New Haven, CT 06520, USA

Abstract

Summary: ANDY (seArch coordination aND analYsis) is a set of Perl programs and modules for

distributing large biological database searches, and in general any sequence of commands, across the

nodes of a Linux computer cluster. ANDY is compatible with several commonly used Distributed

Resource Management (DRM) systems, and it can be easily extended to new DRMs. A distinctive

feature of ANDY is the choice of either dedicated or fair-use operation: ANDY is almost as efficient

as single-purpose tools that require a dedicated cluster, but it runs on a general-purpose cluster along

with any other jobs scheduled by a DRM. Other features include communication through named

pipes for performance, flexible customizable routines for error-checking and summarizing results, and

multiple fault-tolerance mechanisms.

Availability: ANDY is freely available and may be obtained from

http://compbio.berkeley.edu/proj/andy; this site also contains supplemental data and figures and a

more detailed overview of the software.

 2

Background

Many organizations are acquiring computer clusters in order to run large-scale biological database

searches and similar applications efficiently in parallel over multiple cluster nodes. Unfortunately, while

most researchers are able to run smaller database searches themselves on a single machine, it is not

trivial to run such jobs in parallel on a cluster in an efficient and fault-tolerant way. ANDY is a set of

Perl programs and modules that allows users to easily parallelize such jobs, and in general any sequence

of Linux/Unix commands, on a cluster. Similar tools have already been written that are specific to

particular search applications; e.g., TurboBLAST (Bjornson, et al., 2002) is a modified version of

BLAST that runs in parallel on clusters. More general-purpose tools such as Disperse (Clifford and

Mackey, 2000) and WRAPID (Hokamp, et al., 2003) allow users to specify a database search command

line and have it run in parallel on multiple nodes of a cluster, which must be dedicated to the specific

task. By contrast, ANDY sits on top of any cluster’s general DRM and can intersperse fairly and

efficiently with unrelated jobs. ANDY also provides key additional features and enhancements:

extensive error checking and fault tolerance, simple configuration, and extensibility to new applications.

Infrastructure and Configuration

The ANDY infrastructure consists of a server process, started by the user on the cluster head node,

and clients, which the server submits to the DRM to be run on the compute nodes (Figure 1a). Each

ANDY client process, upon starting, contacts the server to request configuration information for the

run. Clients repeatedly request tasks from the server, interpolate a command template with values

specific to the task, execute the task, and send results and notification of errors back to the server. For

example a single task might involve comparing a small number of sequences from one database against

 3

another. ANDY may be run in dedicated mode, in which a small number of client processes are

submitted and once started on a compute node, they execute tasks until all tasks are completed, or in

fair mode, in which each client exits after performing a modest number of tasks, and enough clients are

initially submitted so all tasks will complete—in this latter case other non-ANDY jobs have a chance to

intersperse with ANDY clients in the queue. Users configure ANDY through an XML configuration

file that specifies a parameterized command template in common Unix shell syntax, along with the

locations and types (e.g., FASTA file) of data sources that provide values for each parameter.

Fault Tolerance

The ANDY server continuously monitors the DRM status of queued and running clients. Failed clients

are restarted, and tasks that fail on one node are redistributed to other ANDY clients until a user

defined failure threshold is reached. The server does not exit until all tasks are completed. In many

cases, task failure can be detected using Unix error codes; more generally, modules may also be written

to detect application-specific errors. ANDY also monitors clients by listening for periodic signals from

them. The server determines which clients should be resubmitted based on the job status history

obtained using the client signals and the DRM, allowing reliable detection of job failure while

minimizing unnecessary job resubmission.

Summary Reports

ANDY supports client-side pre-processing of results, such as extracting E-values from database search

output, in order to limit use of server disk space and network bandwidth, and to parallelize reporting.

The server can save results it receives from clients directly to disk, or may optionally pipe the results

 4

into a user-specified command pipeline that executes on the head node throughout the run. This

method of server-side processing is useful for creating a global summary of results (e.g., a summary of

all search results sorted by statistical significance).

Performance

A key improvement of ANDY over similar tools is support for input, output, and interprocess

communication through named pipes, in addition to files and unnamed Unix pipes. Pipes allow

information to be passed in memory between consecutive steps in a pipeline of programs being run,

rather than being written to disk. This can give a significant performance advantage, especially on

typical clusters with multi-CPU nodes sharing common disk. In performance tests we have done with

BLAST on two different clusters, one running PBSPro and the other GridEngine, named pipes

provide a distinct performance advantage over files and allow ANDY to achieve nearly linear scaling in

performance (90% CPU efficiency at maximum CPU usage) over nearly the full range of CPUs (Figure

1b).

Flexibility

Many clusters in the life sciences are managed and used through a DRM. Rather than integrating

limited DRM functionality (as in similar tools such as Disperse and WRAPID), ANDY works

seamlessly with third-party DRMs through modules. ANDY has been tested on clusters running

GridEngine, PBSPro, Ganglia/gexec, and Condor. The DRM modules are the only code in ANDY

specific to the DRM being used, and the tool is easily ported to new DRMs by writing a new module.

 5

Acknowledgements

This work is supported by grants from the NIH (R01-GM62621, 1-P50-GM62412, 1-K22-HG00056)

and the Searle Scholars Program (01-L-116), and by the U.S. Department of Energy under contract

DE-AC03-76SF00098. Hardware was provided through the IBM SUR program.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search
tool, J Mol Biol, 215, 403-410.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic
Acids Res, 25, 3389-3402.

Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall,
M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C. and Eddy, S.R. (2004) The Pfam protein
families database, Nucleic Acids Res, 32 Database issue, D138-141.

Bjornson, R.D., Sherman, A.H., Weston, S.B., Willard, N. and Wing, J. (2002) TurboBLAST: A Parallel
Implementation of BLAST Built on the TurboHub, Proc IEEE Int Workshop High Perf Comp Biol,
1.

Clifford, R. and Mackey, A.J. (2000) Disperse: a simple and efficient approach to parallel database
searching, Bioinformatics, 16, 564-565.

Hokamp, K., Shields, D.C., Wolfe, K.H. and Caffrey, D.R. (2003) Wrapping up BLAST and other
applications for use on Unix clusters, Bioinformatics, 19, 441-442.

Wunderlich, Z., Acton, T.B., Liu, J., Kornhaber, G., Everett, J., Carter, P., Lan, N., Echols, N.,
Gerstein, M., Rost, B. and Montelione, G.T. (2004) The protein target list of the Northeast Structural
Genomics Consortium, Proteins, 56, 181-187.

 6

Figure Legends

Figure 1. a) Overview of ANDY infrastructure. ANDY components are shown in dark grey. The server
process submits jobs, each containing one client process, through the DRM queue, where they may
intersperse with other users’ jobs (circles labeled “other job”). Upon being started, clients
communicate with the server (dashed arrows) to exchange configuration data and receive tasks. Clients
start other programs (grey ovals) as specified in the command template to perform each task.
Information is exchanged (black arrows) between these programs and the ANDY client though named
pipes, memory buffers, or files. One or more sets of results from each client may be sent back to the
server (solid grey arrows), where they are saved to disk or optionally subjected to additional processing
(grey ovals on head node). A color version of this figure is available in the Online Supplement. b) CPU
efficiency for varying numbers of CPUs for a BLAST run with a fixed size search database, on 2 different
clusters: one managed by the PBSPro DRM (dark grey) and one by the GridEngine DRM (light grey).
The query database is a set of all protein targets from the Northeast Structural Genomics Consortium
(Wunderlich, et al., 2004) in Nov 2004, about 10,000 sequences. The search database was a subset of
sequences from the Pfam-A database of protein families (Bateman, et al., 2004), containing 531,384
sequences. CPU efficiency is the fraction of theoretically possible linear speedup achieved on multiple
CPUs versus the lowest CPU time required to run a job on a single CPU on each cluster. The
architectures of both clusters are typical: 32 dual-CPU nodes, where each node’s 2 CPUs share common
memory and local disk. It is likely that much of the performance disadvantage for files is caused by
competition for the single disk on each node, as our PBSPro DRM schedules consecutive jobs on the
same node, while the GridEngine DRM does not; this presumably accounts for the striking drop in
efficiency when using FILEs on the former cluster. Although both DRMs may be optimized to avoid
competition for resources, use of PIPEs rather than FILEs for inter-process communication gives a
significant performance advantage in cases where such competition is unavoidable (i.e., a busy cluster).
ANDY provides two implementations of named pipes: native (results shown) and memory-buffered.
In the former case, Unix named pipes are simply substituted for files; the ANDY client manages their
creation and cleanup, and interpolates the full path names into the command lines of tasks being
executed. Although fast, this type of named pipe has several disadvantages: it cannot be randomly
accessed and the contents can only be read once. In contrast, ANDY memory-buffered pipes are
cross-platform, and allow data to be efficiently distributed to multiple tasks without being written to
disk. As use of memory-buffered pipes incurs a performance penalty relative to named pipes, native
pipes are preferred in cases where the additional flexibility is not required.

 7

Cluster Head Node

Cluster NodeCluster Node

DRM
Queue

ANDY Server Process

Smith, Chandonia, & Brenner, Figure 1

ANDY
Client

Cluster Node Cluster Node

ANDY
Client

...

a) Overview of ANDY infrastructure

C
PU

 E
ff

ic
ie

nc
y

Number of CPUs

b) Scalability of ANDY on two clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

GridEngine, PIPE
GridEngine, FILE

PBSPro, PIPE

PBSPro, FILE

ANDY
Client

ANDY
Client

Other
Job

Other
Job

Other
Job

Other
Job

ANDY: A general, fault-tolerant tool for database searching on
computer clusters

Supplementary Information

Andrew Smith1,2,3,4, John-Marc Chandonia2, and Steven E. Brenner1,2

Address for correspondence:
Steven E. Brenner
Department of Plant and Microbial Biology
461A Koshland Hall
University of California
Berkeley, CA 94720-3102
email: brenner@compbio.berkeley.edu

Affiliations:
1 - Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
2 - Berkeley Structural Genomics Center, Physical Biosciences Division, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA
3 - Department of Molecular Biophysics and Biochemistry and Department of Computer Science, Yale

University, New Haven, CT 06520, USA
4 - Current Address: Department of Computer Science, Yale University, New Haven, CT 06520, USA

Introduction

This supplement provides a more detailed
description of the ANDY infrastructure and
features, reports results of several performance
tests, and offers examples of configuration.

Infrastructure

The ANDY infrastructure consists of a server
process, started by the user on the cluster head
node, and clients, which the server submits to the
DRM to be run on the compute nodes, as shown
in Figure S-1. Use of the cluster DRM allows
ANDY clients to intersperse fairly with jobs
submitted by other users, according to the local
policy for allocation of cluster resources. When
each ANDY client process is started by the DRM
on a compute node, it contacts the server process
to request configuration information for the run
(command template, environment variables to set,
what results to relay, etc.). Clients then enter a
loop in which they repeatedly request tasks from
the server, interpolate the command template with
values specific to the task, execute the task, and
send results and notification of errors back to the
server. For example, if the entire job were to

compare a large database of sequences to another,
a single task might involve comparing a small
number of sequences from one database against
the other database. The granularity of each task
may be specified by the user.

ANDY may be run in dedicated mode, in which a
specified number of client processes are submitted
and these continue to execute tasks until all are
completed, or in fair mode, in which each client
exits after performing a fixed number of tasks. In
the latter mode, the server continues to create new
ANDY clients and submit them to the queue as
required until all tasks are completed. By making
clients take a relatively short period of time on
each node, other jobs have a chance to intersperse
with ANDY clients in the queue.

Performance

A key improvement of ANDY over similar tools is
support for input, output, and inter-command
communication through named pipes, in addition
to files and unnamed Unix pipes. Pipes allow
information to be passed in memory between
consecutive steps in a pipeline of programs being
run, rather than being written to disk. This gives a

significant performance advantage, especially for
larger jobs running on a busy cluster. Figure S-2
shows performance at maximal CPU usage for a
BLAST run (64 jobs running on a 32-node 64-CPU
cluster managed by the PBSPro DRM), showing
how ANDY performance scales with the search
database size. Note the large advantage of named
pipes over files in this example. Note also how
scalability improves as database size increases, as is
expected due to a lower proportion of overhead
for larger task sizes. It is likely that the cause of
the performance disadvantage for files is caused
by competition for the single disk on each node, as
our DRM schedules consecutive jobs on the same
node.

Use of named pipes rather than files to store
temporary results before summarization allows
ANDY to achieve nearly linear scaling in
performance for a range of CPUs that is typical for
modern clusters. Figure S-3 shows performance
for varying numbers of CPUs on a BLAST run of
approximately 10,000 query sequences against a
medium size database, on the same cluster
managed by the PBSPro DRM. While the use of
keepalive sockets gives some advantage, especially
for file operation, most striking is the large
advantage of named pipes over files. In this
example, named pipes provide double the
performance of files. For reasonably sized
databases, ANDY CPU efficiency approaches 90%
when using named pipes.

Figure S-4 shows results of the same performance
test as Figure S-3, on a second cluster managed by
the Sun GridEngine DRM. This cluster also has
32 dual-processor nodes. Keepalive sockets were
not used in this test. As this cluster was optimized
to avoid competition for disk resources (the DRM
was configured to schedule consecutive jobs on
separate nodes), the performance advantages of
named pipes over files was smaller than for the
PBSPro cluster. Except for one data point, ANDY
CPU efficiency remained above 90% throughout
the test when using named pipes.

ANDY provides two implementations of named
pipes: native and memory-buffered. In the former
case (for which results are described above), Unix
named pipes are simply substituted for files; the
ANDY client manages their creation and cleanup,
and interpolates the full path names into the
command lines of tasks being executed. Although

fast, this type of named pipe has several
disadvantages: it cannot be randomly accessed
and the contents can only be read once. To solve
the latter problem, ANDY also provides memory-
buffered pipes, in which one named pipe is the
data source, a separate buffering process reads
from it, buffering in memory as necessary, and the
data is written to one or more other named pipes.
Although memory-buffered pipes still cannot be
randomly accessed, they provide a generalized
“multi” tee, allowing the same data to be
efficiently distributed to several tasks without
being written to disk. Unix named pipes have a
fixed buffer size which can lead to bottlenecks
where one process must wait to write to a buffer
until another process reads from it; in the worst
case, this can create a deadlock where two
processes each wait for the other indefinitely.
Memory-buffered pipes can alleviate this situation
by creating pipes effectively limited only by a
machine’s memory. As use of memory-buffered
pipes incurs a performance penalty relative to
named pipes, native pipes are preferred in cases
where the additional flexibility is not required.

Configuration

Users configure ANDY through an XML
configuration file that specifies a parameterized
command template in common Unix shell syntax,
along with the locations and types (e.g., FASTA file)
of data sources which provide values for each
parameter. An example showing portions of a
XML configuration file is given in Figure S-5. In
this example, sequences in the files test1.fa
and test2.fa are compared to
astral1.65.fa, a complete set of sequences
from the ASTRAL database (Chandonia, et al.,
2004) using PSI-BLAST (the blastpgp program).
ANDY breaks the job into individual tasks
containing a small number of sequences. This
example uses memory buffers to send the output
of the PSI-BLAST jobs to both a client-side
summarizer and to gzip. To instantiate each task
on a node, ANDY interpolates values specific to the
task into variables (words surrounded by __
symbols) in the command line template, then
executes the task. ANDY loops over all data
sources for each variable parameter until the entire
job has been broken into tasks. Values for each
variable parameter may be enumerated directly in
the configuration file, or read from several types
of data sources, including FASTA files and directory

 2

listings. Variable enumeration is particularly useful
for comparing the results of changing one or more
parameters in the command template (e.g., values
for the -h or -j parameters).

Chandonia, J.M., Hon, G., Walker, N.S., Lo
Conte, L., Koehl, P., Levitt, M. and Brenner,
S.E. (2004) The ASTRAL Compendium in
2004, Nucleic Acids Res, 32 Database issue,
D189-192.

References cited in the Online Supplement
 Wunderlich, Z., Acton, T.B., Liu, J., Kornhaber,

G., Everett, J., Carter, P., Lan, N., Echols, N.,
Gerstein, M., Rost, B. and Montelione, G.T.
(2004) The protein target list of the Northeast
Structural Genomics Consortium, Proteins, 56,
181-187.

Bateman, A., Coin, L., Durbin, R., Finn, R.D.,
Hollich, V., Griffiths-Jones, S., Khanna, A.,
Marshall, M., Moxon, S., Sonnhammer, E.L.,
Studholme, D.J., Yeats, C. and Eddy, S.R.
(2004) The Pfam protein families database,
Nucleic Acids Res, 32 Database issue, D138-
141.

 3

Figure Legends

Figure S-1. Overview of ANDY infrastructure. ANDY components are shown in orange. The server
process submits jobs, each containing one client process, through the DRM (light blue), where they may
intersperse with other users’ jobs (purple). Upon being started, clients communicate with the server
(green arrows) to exchange configuration data and receive tasks. Clients start other programs (yellow) as
specified in the command template to perform each task. Information is exchanged (red arrows)
between these programs and the ANDY client though named pipes, memory buffers, or files. One or
more sets of results from each client may be sent back to the server (blue arrows), where they are saved
to disk or optionally subjected to additional processing (yellow, on head node).

Figure S-2. Performance and scalability of ANDY. Results compare PIPE versus FILE, client/server
keepalive sockets versus not, and increasing BLAST database size (i.e., number of database sequences).
The query database is a set of all protein targets from the Northeast Structural Genomics Consortium
(Wunderlich, et al., 2004) in Nov 2004, about 10000 sequences. The search databases were various sized
subsets of sequences from the Pfam-A database of protein families (Bateman, et al., 2004). Our cluster
has 32 dual-processor nodes (64 CPUs), where each node’s 2 CPUs share a common memory and local
disk, so this shows scalability at maximum cluster utilization. The cluster was managed by the PBSPro
DRM. CPU efficiency is the percentage of theoretically possible linear speedup achieved on multiple
CPUs versus the CPU time required to run a job on a single CPU. The dip in the green line (“PIPE,
keepalive”) is a small aberration, likely caused by transient issues on the cluster during the long run to
obtain the data, but the trend is clear and unambiguous. For simplicity the single CPU baseline time was
measured using the ANDY tool. As a control, we also did such a single CPU run on a quiescent cluster
node without ANDY or the DRM for BLAST database size of 531384 sequences, and found a negligible
time difference (4880 sec for this single CPU run versus about 4900 to 4950 for the equivalent run with
ANDY via the cluster).

Figure S-3. CPU efficiency for varying numbers of CPUs for a BLAST run with a fixed size search
database. The query database is a set of all protein targets from the Northeast Structural Genomics
Consortium in Nov 2004, about 10,000 sequences. The search database was a subset of sequences from
the Pfam-A database of protein families (Bateman, et al., 2004), containing 531,384 sequences. Our
cluster has 32 dual-processor nodes (64 CPUs), where each node’s 2 CPUs share a common memory and
local disk. The cluster was managed by the PBSPro DRM. CPU efficiency is the percentage of
theoretically possible linear speedup achieved on multiple CPUs versus the CPU time required to run a job
on a single CPU. It is likely that the cause of the performance disadvantage for files is caused by
competition for the single disk on each node, as our DRM schedules consecutive jobs on the same node.
Average performance for jobs running on an even number of CPUs is lower than for jobs running on an
odd number of CPUs, and this phenomenon is particularly apparent when jobs are running on a small
number of CPUs (<10). Although the DRM may be optimized to avoid competition for resources, use
of PIPEs rather than FILEs for inter-process communication gives a significant performance advantage in
cases where such competition is unavoidable (i.e., a busy cluster).

Figure S-4. CPU efficiency for varying numbers of CPUs for a BLAST run with a fixed size search
database, using the GridEngine DRM. The test was identical to that from Figure S-3, but run on a
second test cluster managed by the GridEngine DRM. This cluster also has 32 dual-processor nodes (64
CPUs), where each node’s 2 CPUs share a common memory and local disk. The GridEngine DRM was
configured to not schedule consecutive jobs on the same node. As expected, this provides relatively
better scaling in the FILE test than our PBSPro cluster, although PIPEs provide better performance than
FILEs over most of the range of CPUs tested.

Figure S-5. Example of parameterized command templates for ANDY. The ‘&’ character separates
commands which will run in parallel. The “&&&” symbol separates commands which run on the client

 4

nodes from those which run on the server. The command template runs PSI-BLAST (blastpgp) on a
sequence called by a variable name, __SEQ__. The output is sent to a variable named __OUT__. The
configuration file specifies that __SEQ__ will be a named pipe containing sequences read consecutively
from two FASTA files: test1.fa and test2.fa. Creation and cleanup of this randomly named pipe are
handled by the ANDY client. Each client task will handle one or more sequences, as specified by the user
(not shown). The __OUT__ variable will be a memory buffer, which is also handled by the ANDY client.
In this example, a local summarizer (sumClient) runs on each client node, extracting items of interest
(e.g., E-values and raw scores) from the BLAST output into a summary report. A server-side summarizer
(sumServer) amalgamates summary reports from each client into a global summary named “global-
summary.txt”. As the client-side summarizer runs, the raw output is also compressed using gzip and
stored in a file. This compressed output will be written to a file and stored on the server, named
according to the index of the first sequence processed in the task. Full documentation of the file format
is available on the ANDY website.

 5

Cluster Head Node

Cluster NodeCluster Node

DRM
Queue

ANDY Server Process

Smith, Chandonia, & Brenner, Figure S-1

ANDY
Client

Cluster Node Cluster Node

ANDY
Client

...

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000 600000 700000

C
PU

 E
ff

ic
ie

nc
y

BLAST Database Size (i.e., job size)

ANDY CPU efficiency on simple BLAST runs with 64 jobs

PIPE, NO keepalive
PIPE, keepalive

FILE, keepalive

FILE, NO keepalive

Smith, Chandonia, & Brenner, Figure S-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

C
PU

 E
ff

ic
ie

nc
y

Number of CPUs

ANDY Single Run Scalability

Smith, Chandonia, & Brenner, Figure S-3

PIPE, NO keepalive

PIPE, keepalive

FILE, keepalive

FILE, NO keepalive

C
PU

 E
ff

ic
ie

nc
y

Number of CPUs

Smith, Chandonia, & Brenner, Figure S-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

PIPE

FILE

Smith, Chandonia, & Brenner, Fig S-5:

Command template:

blastpgp -i __SEQ__ -d astral-1.65.fa -j 6 -h 0.001 -o __OUT__ &
sumClient -i __OUT__ -o __SUM_OUT__ &
gzip -9 < __OUT__ > __ZIP_OUT__ &&&
sumServer -i __SUM_OUT__ -o global-summary.txt

Variable configuration:

<VARIABLE NAME="__SEQ__" TYPE="PIPE">
 <DATA_SOURCE TYPE="FASTA_FILE">
 <LIST>
 <ITEM>/home/db/test1.fa</ITEM>
 <ITEM>/home/db/test2.fa</ITEM>
 </LIST>
 </DATA_SOURCE>
</VARIABLE>

<VARIABLE NAME="__OUT__" TYPE="MEM_BUF"/>

<VARIABLE NAME="__ZIP_OUT__" TYPE="FILE">
 <SERVER_SAVE>[__SEQ__.INDEX1].bl.gz</SERVER_SAVE>

 </VARIABLE>

	ANDY_sup_5_fmt.pdf
	ANDY: A general, fault-tolerant tool for database searching
	supfigs.pdf
	ANDY: A general, fault-tolerant tool for database searching

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

